Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
نویسندگان
چکیده
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final (FPE) and Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on most commonly accepted definition of MSPE as expectation squared prediction error loss, we provide theoretical expressions for it, valid any linear model (LM) fitter, be it under random or non designs. Specializing these each them, able to derive closed formulas some popular LM fitters: Ordinary Least Squares (OLS), with without a full column rank design matrix; Ridge latter embedding smoothing splines fitting. For fitters, then deduce computable estimate which turns out coincide FPE. Using slight variation, similarly get class estimates coinciding classical GCV formula those same fitters.
منابع مشابه
the role of russia in transmission of energy from central asia and caucuses to european union
پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...
15 صفحه اولGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملImproving plant biomass estimation in the field using partial least squares regression and ridge regression
Estimating primary productivity over time is challenging for plant ecologists. The most accurate biomass measurements require destructive sampling and weighing. This is often not possible for manipulative studies that involve repeatedmeasures over time, or for studies in protected areas. Estimates of aboveground plant biomass using allometric equations or linear regression on single plant trait...
متن کاملFuzzy Hybrid least-Squares Regression Approach to Estimating the amount of Extra Cellular Recombinant Protein A from Escherichia coli BL21
Introduction: Immune Protein A is a component with a vast spectrum of biochemical, biological and medical usages. The coding gene of this protein was extracted from Staphylococcus aureus and was cloned and expressed in Escherichia coli bacteria. Suitable statistical methods are utilized to optimize expression conditions for evaluating experiment accuracy , guarantee the accuracy of subsequent ...
متن کاملBayesian Smoothing and Regression Splines for Measurement Error Problems
In the presence of covariate measurement error, estimating a regression function nonparametrically is extremely dif cult, the problem being related to deconvolution. Various frequentist approaches exist for this problem, but to date there has been no Bayesian treatment. In this article we describe Bayesian approaches to modeling a exible regression function when the predictor variable is mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Statistics
سال: 2023
ISSN: ['2161-7198', '2161-718X']
DOI: https://doi.org/10.4236/ojs.2023.135033